
Hans-Petter Halvorsen

https://www.halvorsen.blog

Stability Analysis
of Control Systems

with Python

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Stability Analysis
• Poles
• Frequency Response
• Python Examples
–SciPy (SciPy.signal)
–Python Control Systems Library (control)

Contents

It is important to check the Stability properties of a
given Control System and perform simulations
before applied to the real process
• In the complex domain we can check the stability

of the control system by the placements of the
poles

• In the time domain we can simulate the system,
e.g., performing a simple step response

• In the frequency domain we can check stability
properties using, e.g., a Bode diagram

Stability Analysis

Stability Analysis

𝑡 𝑡

lim
!→#

𝑦 𝑡 = ∞

𝑡

0 < lim
!→#

𝑦 𝑡 < ∞lim
!→#

𝑦 𝑡 = 𝑘

Re

ImPoles:

Step Response:

Re

Im

Re

Im

Frequency Response:
𝜔$ < 𝜔%&' 𝜔$ > 𝜔%&'𝜔$ = 𝜔%&'

Asymptotically Stable System Marginally Stable System Unstable System

Control System

Controller Process
𝑟 𝑢𝑒

−
𝑦"

𝑥

Filter Sensor

• In Stability Analysis and Control System design we typically
use Transfer Functions.

• Typically we need to find a mathematical model of the
process in form of a Transfer Function like this:

𝐻# 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

• Transfer functions are a model form based on the Laplace
transform

• You can find the Transfer function(s) from the differential
equation(s) or from logged data from the real process

Transfer Functions

Transfer Functions
A general Transfer function is on the form:

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝑏!𝑠! + 𝑏!"#𝑠!"# +⋯+ 𝑏# 𝑠 + 𝑏$
𝑎%𝑠% + 𝑎%"#𝑠%"# +⋯+ 𝑎# 𝑠 + 𝑎$

=
𝑇%#𝑠 + 1 𝑇%&𝑠 + 1 ⋯ 𝑇%'𝑠 + 1
𝑇(#𝑠 + 1 𝑇(&𝑠 + 1 ⋯ 𝑇(!𝑠 + 1

Where 𝑦 is the output and 𝑢 is the input. The symbol “s” is the Laplace
operator.

𝐻 𝑠𝑢(𝑠) 𝑦(𝑠)

A Transfer Function can also easily be implemented in Python

Input Output

System described with
a Transfer Function

Basic Control System

𝐻$(𝑠) 𝐻#(𝑠)
𝑟 𝑢𝑒

−
𝑦

𝑦

Below we see a basic Control System consisting of a Process and a Controller:

Controller Process

Feedback Loop

Control System

𝐻$(𝑠) 𝐻#(𝑠)
𝑟 𝑢𝑒

−
𝑦"

𝑥

𝐻"(𝑠) 𝐻%(𝑠)
𝑦

The Control Loop basically consists of a set of Transfer Function. This is a more
sophisticated example:

Controller Process

Filter

A Lowpass Filter that remove/
reduce Noise in the Measurements

Sensor

Sensor(s) the measure(s) one
or more process variables

Sometimes you just include the sensor as part of the process and sometimes you don’t need a Filter

Loop Transfer Function
The Loop Transfer Function 𝐿(𝑠) is defined as follows:

𝐿 𝑠 = 𝐻. 𝑠 𝐻/ 𝑠 𝐻0 𝑠 𝐻1 𝑠 ⋯

𝐿(𝑠)

The Loop Transfer Function is the product of all the transfer functions in the loop

Tracking Transfer Function

𝑇(𝑠) =
𝑦(𝑠)
𝑟(𝑠)

=
𝐿(𝑠)

1 + 𝐿(𝑠)

The Tracking Transfer Function 𝑇(𝑠) is defined as follows:

The Tracking Transfer Function 𝑇(𝑠) is the transfer function from the reference/setpoint (𝑟)
to the process output variable (𝑦)

𝑇(𝑠)𝑟(𝑠) 𝑦(𝑠)

The Tracking Property is good if the tracking function T has value equal to or close to 1:

𝑇 ≈ 1

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Libraries

NumPy, Matplotlib
• In addition to Python itself, the

Python libraries NumPy, Matplotlib is
typically needed in all kind of
applications
• If you have installed Python using the

Anaconda distribution, these are
already installed

The Signal Module in the SciPy Library

https://docs.scipy.org/doc/scipy/reference/signal.html

SciPy.signal

With SciPy.signal you can
create Transfer Functions,
State-space Models, you can
simulate dynamic systems, do
Frequency Response Analysis,
including Bode plot, etc.

https://docs.scipy.org/doc/scipy/reference/signal.html

• The Python Control Systems Library (control) is a
Python package that implements basic operations
for analysis and design of feedback control systems.

• Existing MATLAB user? The functions and the
features are very similar to the MATLAB Control
Systems Toolbox.

• Python Control Systems Library Homepage:
https://pypi.org/project/control

• Python Control Systems Library Documentation:
https://python-control.readthedocs.io

Python Control Systems Library

https://pypi.org/project/control
https://python-control.readthedocs.io/

Transfer Function in Python
import numpy as np
import control

Define Transfer Function
num = np.array([2])
den = np.array([3 , 1])

H = control.tf(num , den)
print ('H(s) =', H)

Transfer Function Example:

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
2

3𝑠 + 1

Loop Transfer Function
import numpy as np
import control

Controller
Kp = 0.4
Ti = 2
num = np.array ([Kp*Ti, Kp])
den = np.array ([Ti , 0])
Hc = control.tf(num , den)

Process
num = np.array ([2])
den = np.array ([3 , 1])
Hp = control.tf(num , den)

L = control.series(Hc, Hp)
print(L)

𝐿 𝑠 = 𝐻$ 𝑠 𝐻(𝑠

Loop Transfer Function:

Control System:

𝐻((𝑠) =
2

3𝑠 + 1𝐻! 𝑠 =
𝐾"(𝑇#𝑠 + 1)

𝑇#𝑠

Process (random example):PI Controller:

Tracking Transfer Function
import numpy as np
import control

Controller
Kp = 0.4
Ti = 2
num = np.array ([Kp*Ti, Kp])
den = np.array ([Ti , 0])
Hc = control.tf(num , den)

Process
num = np.array ([2])
den = np.array ([3 , 1])
Hp = control.tf(num , den)

L = control.series(Hc, Hp)
print(L)

T = control.feedback(L,1)
print(T)𝑇(𝑠) =

𝑦(𝑠)
𝑟(𝑠) =

𝐿(𝑠)
1 + 𝐿(𝑠)

Tracking Transfer Function:

Control System:

𝐻((𝑠) =
2

3𝑠 + 1
𝐻! 𝑠 =

𝐾"(𝑇#𝑠 + 1)
𝑇#𝑠

Process (random example):PI Controller:

𝐿 𝑠 = 𝐻$ 𝑠 𝐻(𝑠
Loop Transfer Function:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Poles

Poles and Stability of the System
The poles are important when analyzing the stability
of a system. The Figure below gives an overview of the
poles impact on the stability of a system.

Unstable
System

(right side)
Stable
System

(left side) Re

Im
We have 3 different Alternatives:
1. Asymptotically Stable System
2. Marginally Stable System
3. Unstable System

Asymptotically Stable System

Re

Im
Each of the poles of the transfer
function lies strictly in the left half
plane (has strictly negative real part)

𝑡

lim
!→#

𝑦 𝑡 = 𝑘

Python import control
import numpy as np
import matplotlib.pyplot as plt

Define Transfer Function
num = np.array([2])
den = np.array([3 , 1])

H = control.tf(num , den)
print ('H(s) =', H)

Poles
p = control.pole(H)
print ('p =', p)

Step Response
t, y = control.step_response(H)

plt.plot(t,y)
plt.title("Step Response")
plt.grid()

control.pzmap(H)

Transfer Function:

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
2

3𝑠 + 1

p = [-0.33333333]

lim
!→#

𝑦 𝑡 = 𝑘

Asymptotically Stable System

Marginally Stable System

Re

Im

𝑡

0 < lim
!→#

𝑦 𝑡 < ∞

One or more poles lies on the
imaginary axis (have real part equal to
zero), and all these poles are distinct.
Besides, no poles lie in the right half
plane.

Python import control
import numpy as np
import matplotlib.pyplot as plt

Define Transfer Function
num = np.array([3])
den = np.array([1, 0, 1])

H = control.tf(num , den)
print ('H(s) =', H)

Poles
p = control.pole(H)
print ('p =', p)

Step Response
tstart = 0; tstop = 20; tstep = 0.1
t = np.arange(tstart, tstop, tstep)

t, y = control.step_response(H, t)

plt.plot(t,y)
plt.title("Step Response")
plt.grid()

control.pzmap(H)

Transfer Function:

𝐻(𝑠) =
3

𝑠$ + 1

Marginally Stable System

Unstable System

Re

Im

Re

Im

or

𝑡

lim
!→#

𝑦 𝑡 = ∞

At least one pole lies in the right half plane
(has real part greater than zero).

Or: There are multiple and coincident
poles on the imaginary axis.
Example: double integrator 𝐻(𝑠) = 4

5!

Python import control
import numpy as np
import matplotlib.pyplot as plt

Define Transfer Function
num = np.array([2])
den = np.array([3 , -1])

H = control.tf(num , den)
print ('H(s) =', H)

Poles
p = control.pole(H)
print ('p =', p)

Step Response
t, y = control.step_response(H)

plt.plot(t,y)
plt.title("Step Response")
plt.grid()

control.pzmap(H)

Transfer Function:

𝐻(𝑠) =
2

3𝑠 − 1

Unstable System

lim
!→#

𝑦 𝑡 = ∞

Python
import control
import numpy as np
import matplotlib.pyplot as plt

Define Transfer Function
num = np.array([2, 1])
den = np.array([3 , -1, -2])

H = control.tf(num , den)
print ('H(s) =', H)

Poles
p = control.pole(H)
print ('p =', p)

Step Response
t, y = control.step_response(H)

plt.plot(t,y)
plt.title("Step Response")
plt.grid()

control.pzmap(H)

Transfer Function:

𝐻 𝑠 =
2𝑠 + 1

3𝑠$ − 𝑠 − 2

Unstable System

lim
!→#

𝑦 𝑡 = ∞

Python
import control
import numpy as np
import matplotlib.pyplot as plt

Define Transfer Function
num = np.array([2])
den = np.array([1, 0, 0])

H = control.tf(num , den)
print ('H(s) =', H)

Poles
p = control.pole(H)
print ('p =', p)

Step Response
t, y = control.step_response(H)

plt.plot(t,y)
plt.title("Step Response")
plt.grid()

control.pzmap(H)

Transfer Function:

𝐻(𝑠) =
2
𝑠8

Unstable System

𝑝% = 0, 𝑝$ = 0

(This is a double Integrator)

Poles and Stability

𝑡 𝑡

lim
!→#

𝑦 𝑡 = ∞

𝑡

0 < lim
!→#

𝑦 𝑡 < ∞lim
!→#

𝑦 𝑡 = 𝑘

Re

ImPoles:

Step Response:

Re

Im

Re

Im

Asymptotically Stable System Marginally Stable System Unstable System

Hans-Petter Halvorsen

https://www.halvorsen.blog

Frequency Response

Frequency Response

Dynamic
System

Input Signal Output Signal

Gain Phase Lag
FrequencyAmplitude

The frequency response of a system expresses how a sinusoidal signal
of a given frequency on the system input is transferred through the
system. The only difference in the signal is the gain and the phase lag.

𝑢 𝑡 = 𝑈 > sin(𝜔𝑡) 𝑦 𝑡 = 𝑈𝐴 > 𝑠𝑖𝑛(𝜔𝑡 + 𝜙)

Frequency Response
𝐻 𝑠 =

)𝑦(𝑠
)𝑢(𝑠

For a given Transfer Function:

𝐻 𝑗𝜔 =)𝐻(𝑗𝜔 𝑒)'∠)('+

We have that:

Where 𝐻(𝑗𝜔) is the frequency response of the system, i.e., we may find the frequency
response by setting 𝑠 = 𝑗𝜔 in the transfer function. Bode diagrams are useful in frequency
response analysis. The Bode diagram consists of 2 diagrams, the Bode magnitude diagram,
𝐴(𝜔) and the Bode phase diagram, 𝜙(𝜔).

The Gain (Magnitude) function:

𝐴 𝜔 =)𝐻(𝑗𝜔

The Phase function:

)𝜙 𝜔 = ∠𝐻(𝑗𝜔

• The Bode diagram gives a simple Graphical
overview of the Frequency Response for a
given system.

• The Bode Diagram is tool for Analyzing the
Stability properties of the Control System.

• You can find the Bode diagram from
experiments on the physical process or from
the transfer function (the model of the
system). We will use the Transfer Function

Bode Diagram

Bode Diagram Explained

The x-scale is logarithmic

Normally, the unit for
frequency is Hertz [Hz],
but in frequency response
and Bode diagrams we use
radians 𝜔 [𝑟𝑎𝑑/𝑠].

The 𝑦-scale is in [𝑑𝐵]

The y-scale is in [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] The 𝑥-scale is in radians 𝜔 [𝑟𝑎𝑑/𝑠]

Magnitude/
Gain Plot

Phase Plot

Below we see a Bode Diagram for a given Transfer Function

𝐴 𝜔 =)𝐻(𝑗𝜔

)𝜙 𝜔 = ∠𝐻(𝑗𝜔

Conversion Formulas
𝑥 𝑑𝐵 = 20𝑙𝑜𝑔4P𝑥

The y-scale is in 𝑑𝐵 . So we typically need to use the following formula:

The 𝑦-scale is in [𝑑𝑒𝑔𝑟𝑒𝑒𝑠]

2𝜋 𝑟𝑎𝑑 = 360° 𝜔 = 2𝜋𝑓

We know that the relationship
between radians and degrees are:

The 𝑥-scale should be in radians 𝜔 [𝑟𝑎𝑑/𝑠]

The relationship between the frequency 𝑓
in 𝐻𝑒𝑟𝑡𝑧 [𝐻𝑧] and the frequency 𝜔 in
radians [𝑟𝑎𝑑/𝑠] is:

𝑑 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑟[𝑟𝑎𝑑𝑖𝑎𝑛𝑠] >
180
𝜋

𝑟 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 = 𝑑 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 >
𝜋
180

This gives the following conversion formulas:

Python
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

Define Transfer Function
num1 = np.array([3])
num2 = np.array([2, 1])
num = np.convolve(num1, num2)

den1 = np.array([3, 1])
den2 = np.array([5, 1])
den = np.convolve(den1, den2)

H = signal.TransferFunction(num, den)
print ('H(s) =', H)

Frequencies
w_start = 0.01
w_stop = 10
step = 0.01
N = int ((w_stop-w_start)/step) + 1
w = np.linspace (w_start , w_stop , N)

Bode Plot
w, mag, phase = signal.bode(H, w)

plt.figure()
plt.subplot (2, 1, 1)
plt.semilogx(w, mag) # Bode Magnitude Plot
plt.title("Bode Plot")
plt.grid(b=None, which='major', axis='both')
plt.grid(b=None, which='minor', axis='both')
plt.ylabel("Magnitude (dB)")

plt.subplot (2, 1, 2)
plt.semilogx(w, phase) # Bode Phase plot
plt.grid(b=None, which='major', axis='both')
plt.grid(b=None, which='minor', axis='both')
plt.ylabel("Phase (deg)")
plt.xlabel("Frequency (rad/sec)")
plt.show()

𝐻 𝑠 =
3(2𝑠 + 1)

(3𝑠 + 1)(5𝑠 + 1)

Transfer Function Example:

SciPy.signal

Python
import numpy as np
import control

Define Transfer Function
num1 = np.array([3])
num2 = np.array([2, 1])
num = np.convolve(num1, num2)

den1 = np.array([3, 1])
den2 = np.array([5, 1])
den = np.convolve(den1, den2)

H = control.tf(num, den)
print ('H(s) =', H)

Bode Plot
control.bode(H, dB=True)

𝐻 𝑠 =
3(2𝑠 + 1)

(3𝑠 + 1)(5𝑠 + 1)

Transfer Function Example:

Python Control Systems Library

Frequency Response Stability Analysis

The Loop Transfer Function 𝐿(𝑠) is defined as follows:

𝐿 𝑠 = 𝐻. 𝑠 𝐻/ 𝑠 𝐻0 𝑠 𝐻1 𝑠 ⋯

𝐿(𝑠)

The Loop Transfer Function is the product of all the transfer functions in the loop

We use the Loop Transfer Function in Frequency Response Stability Analysis of a Control System

Bode and Stability Properties

𝐿𝑜𝑔 𝜔

𝐿𝑜𝑔 𝜔
𝜑

∆𝐾
𝜔𝑐

𝜔180

ω [rad/s]

ω [rad/s]

0𝑑𝐵

• The Bode diagram gives a
simple Graphical overview of
the Frequency Response for a
given system.

• A Tool for Analyzing the
Stability properties of the
Control System.

• With Python you can easily
create Bode diagrams from the
Transfer function model using
the bode() function

We use the Loop Transfer Function 𝐿 𝑠 as basis for the Bode Diagram
𝐿 𝑗𝜔
𝐴 𝜔 =)𝐿(𝑗𝜔

)𝜙 𝜔 = ∠𝐿(𝑗𝜔

Frequency Response Stability Analysis
A dynamic system has one of the following stability properties:
• Asymptotically stable system
• Marginally stable system
• Unstable system

Gain Margin - GM (∆𝐾) and Phase Margin – PM (𝜙) are important
design criteria for analysis of feedback control systems.
• The Gain Margin – GM (Δ𝐾) is how much the loop gain can

increase before the system become unstable.
• The Phase Margin - PM (𝜙) is how much the phase lag function

of the loop can be reduced before the loop becomes unstable.

Crossover Frequencies
𝜔%,- (gain margin frequency - gmf) is the gain margin frequency/frequencies, in
radians/second. A gain margin frequency indicates where the model phase crosses -180
degrees.
𝜔! (phase margin frequency - pmf) returns the phase margin frequency/frequencies, in
radians/second. A phase margin frequency indicates where the model magnitude crosses
0 decibels.

Gain Crossover-frequency - 𝜔! Definition:

𝐿 𝑗𝜔! = 1 = 0𝑑𝐵

Phase Crossover-frequency - 𝜔%,- Definition:

∠𝐿 𝑗𝜔%,- = −180.

Note! Both 𝜔%,- and 𝜔! are called the crossover-frequencies

Gain Margin and Phase Margin
Gain Margin - GM (∆𝐾) and Phase Margin – PM (𝜙) are important design criteria for
analysis of feedback control systems.

The Gain Margin – GM (Δ𝐾) is how much the loop gain can increase before the system
become unstable.
Definition:

𝐺𝑀 = %
/ '+"#$

or:
𝐺𝑀 𝑑𝐵 = − 𝐿 𝑗𝜔%,- 𝑑𝐵

The Phase Margin - PM (𝜙) is how much the phase lag function of the loop can be
reduced before the loop becomes unstable.
Definition:

𝑃𝑀 = 180. + ∠𝐿(𝑗𝜔!)

Frequency Response Stability Analysis
We have the following:

• Asymptotically stable system: 𝜔$ < 𝜔%&'
• Marginally stable system: 𝜔$ = 𝜔%&'
• Unstable system: 𝜔$ > 𝜔%&'
The Tracking Property is good if:

)𝐿(𝑗𝜔 ≫ 1 (0 𝑑𝐵)

The Tracking Property is poor if:

)𝐿(𝑗𝜔 ≪ 1(0 𝑑𝐵)

Python
import numpy as np
import control

Define Transfer Function
num = np.array([0.1])

den1 = np.array([1, 0])
den2 = np.array([3, 1])
den3 = np.array([5, 1])
den = np.convolve(den1, np.convolve(den2, den3))

L = control.tf(num, den)
print ('HL(s) =', L)

𝐿 𝑠 =
0.1

𝑠(3𝑠 + 1)(5𝑠 + 1)

Assume the following Loop Transfer Function:

=
0.1

15𝑠\ + 8𝑠8 + 𝑠 import numpy as np
import control

Define Transfer Function
num = np.array([0.1])
den = np.array([15, 8, 1, 0])

L = control.tf(num, den)
print ('L(s) =', L)

Or:

Python
import numpy as np
import control

Define Transfer Function
num = np.array([0.1])
den = np.array([15, 8, 1, 0])

L= control.tf(num, den)
print ('L(s) =', L)

control.bode(L, dB=True, deg=True, margins=True)

Stability margins and crossover frequencies
gm , pm , w180 , wc = control.margin(L)

Convert gm to Decibel
gmdb = 20 * np.log10(gm)

print("wc =", f'{wc:.2f}', "rad/s")
print("w180 =", f'{w180:.2f}', "rad/s")
print("GM =", f'{gm:.2f}')
print("GM =", f'{gmdb:.2f}', "dB")
print("PM =", f'{pm:.2f}', "deg")

𝐿 𝑠 =
0.1

15𝑠) + 8𝑠* + 𝑠

Loop Transfer Function:

wc = 0.09 rad/s
w180 = 0.26 rad/s
GM = 14.54 dB
PM = 51.30 deg

Bode Plot

𝜔! = 0.09𝑟𝑎𝑑/𝑠

𝜔%,- = 0.26𝑟𝑎𝑑/𝑠

𝐺𝑀 ∆𝐾 ≈ 14.5 𝑑𝐵

PM (𝜙)

𝑃𝑀 𝜙 ≈ 51°

wc = 0.09 rad/s
w180 = 0.26 rad/s
GM = 14.54 dB
PM = 51.30 deg

We can find 𝜔! , 𝜔%,- , 𝐺𝑀 ∆𝐾 , and 𝑃𝑀 𝜙 directly from the Bode Diagram as shown

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Example

Stability Analysis Example

Controller Process
𝑟 𝑢𝑒

−
𝑦"

𝑥
𝐻(𝑠 =

3
4𝑠 + 1𝐻$ 𝑠 =

𝐾((𝑇+𝑠 + 1)
𝑇+𝑠

Loop Transfer Function: 𝐿 𝑠 = 𝐻$(𝑠)𝐻((𝑠)𝐻,(𝑠)𝐻-(𝑠)

Tracking Transfer Function: 𝑇(𝑠) = .(0)
2(0)

= 3(0)
%43(0)

In Stability Analysis we use the following Transfer Functions:

Filter

𝐻, 𝑠 =
1

𝑇,𝑠 + 1

Sensor
𝐻- 𝑠 =

1
𝑇-𝑠 + 1

import numpy as np
import matplotlib.pyplot as plt
import control

Transfer Function Process
K = 3; T = 4
num_p = np.array ([K])
den_p = np.array ([T , 1])
Hp = control.tf(num_p , den_p)
print ('Hp(s) =', Hp)

Transfer Function PI Controller
Kp = 0.4
Ti = 2
num_c = np.array ([Kp*Ti, Kp])
den_c = np.array ([Ti , 0])
Hc = control.tf(num_c, den_c)
print ('Hc(s) =', Hc)

Transfer Function Measurement
Tm = 1
num_m = np.array ([1])
den_m = np.array ([Tm , 1])
Hm = control.tf(num_m , den_m)
print ('Hm(s) =', Hm)

Transfer Function Lowpass Filter
Tf = 1
num_f = np.array ([1])
den_f = np.array ([Tf , 1])
Hf = control.tf(num_f , den_f)
print ('Hf(s) =', Hf)

The Loop Transfer function
L = control.series(Hc, Hp, Hf, Hm)
print ('L(s) =', L)

Tracking transfer function
T = control.feedback(L,1)
print ('T(s) =', T)

Step Response Feedback System (Tracking System)
t, y = control.step_response(T)
plt.figure(1)
plt.plot(t,y)
plt.title("Step Response Feedback System T(s)")
plt.grid()

Bode Diagram with Stability Margins
plt.figure(2)
control.bode(L, dB=True, deg=True, margins=True)

Poles and Zeros
control.pzmap(T)
p = control.pole(T)
z = control.zero(T)
print("poles = ", p)

Calculating stability margins and crossover frequencies
gm , pm , w180 , wc = control.margin(L)

Convert gm to Decibel
gmdb = 20 * np.log10(gm)

print("wc =", f'{wc:.2f}', "rad/s")
print("w180 =", f'{w180:.2f}', "rad/s")

print("GM =", f'{gm:.2f}')
print("GM =", f'{gmdb:.2f}', "dB")
print("PM =", f'{pm:.2f}', "deg")

Find when Sysem is Marginally Stable (Kritical Gain - Kc)
Kc = Kp*gm
print("Kc =", f'{Kc:.2f}')

Asymptotically Stable System

Poles

Frequency Response

Step Response

As you see we have an Asymptotically Stable System
The Critical Gain is 𝐾! = 𝐾! × Δ𝐾 ≈ 1.43

Gain Margin (GM): Δ𝐾 ≈ 11. 𝑑𝐵
Phase Margin (PM): φ ≈ 30°

This means that we can increase
𝐾) a bit without problem

𝐾" = 0.4

𝜔$ < 𝜔%&'

Poles in Left plane

wc = 0.37 rad/s
w180 = 0.77 rad/s
GM = 11.06 dB
PM = 30.09 deg

Marginally Stable System

Poles

Frequency Response

Step Response

As you see we have a Marginally Stable System

𝐾" = 1.43

𝜔$ = 𝜔%&'

Poles on the Imaginary Axis

wc = 0.77 rad/s
w180 = 0.77 rad/s
GM = 0.00 dB
PM = 0.00 deg

Unstable System

Poles

Frequency Response

Step Response

As you see we have a Marginally Stable System

𝐾" = 2

𝜔$ > 𝜔%&'

Poles in Right plane

wc = 0.91 rad/s
w180 = 0.77 rad/s
GM = -2.92 dB
PM = -7.85 deg

Conclusions
We have an Asymptotically Stable System when 𝐾(< 𝐾$
• We have Poles in the left half plane
• lim

!→#
𝑦 𝑡 = 1 (Good Tracking)

• 𝜔$ < 𝜔%&'
We have a Marginally Stable System when 𝐾(= 𝐾$
• We have Poles on the Imaginary Axis
• 0 < lim

!→#
𝑦 𝑡 < ∞

• 𝜔$ = 𝜔%&'
We have an Unstable System when 𝐾(> 𝐾$
• We have Poles in the right half plane
• lim

!→#
𝑦 𝑡 = ∞

• 𝜔$ > 𝜔%&'

Stability Analysis Summary

𝑡 𝑡

lim
!→#

𝑦 𝑡 = ∞

𝑡

0 < lim
!→#

𝑦 𝑡 < ∞lim
!→#

𝑦 𝑡 = 𝑘

Re

ImPoles:

Step Response:

Re

Im

Re

Im

Frequency Response:
𝜔$ < 𝜔%&' 𝜔$ > 𝜔%&'𝜔$ = 𝜔%&'

Asymptotically Stable System Marginally Stable System Unstable System

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

